Matplotlib is a Multiplatform visualization library for data that is built on NumPy Arrays. This Library is designed to work with the broader SciPy stack, which includes different modules of Python used for machine learning and data science.

Matplotlib is the default(sort of) Python Data Visualization Package and is being used extensively in the market for creating plots, charts, graphs for datasets for better data analysis and visualization.

In this tutorial of Matplotlib, we will start with the basics of Matplotlib and will cover all the different types of Plots available in Matplotlib.

Matplotlib Basics

Introduction to Matplotlib

General Concepts in Matplotlib

Matplotlib in Jupyter Notebook

Matplotlib PyPlot API

Matplotlib Simple Line Plot

Matplotlib Pylab Module

Matplotlib Object Oriented Interface

Matplotlib Figure Class

Matplotlib Axes Class

Matplotlib Multiplots with subplots() Function

Matplotlib subplots() Function

Matplotlib subplot2grid() function 

Matplotlib Grids

Formatting the Axes in Matplotlib

Setting Limits for Axis in Matplotlib

Setting Ticks and Tick Labels in Matplotlib

Matplotlib Twin Axes

MATPLOTLIB PLOTS

Matplotlib Bar Plot – bar() Function

Matplotlib Histrograms – hist() Function

Matplotlib Pie Chart – pie() Function

Matplotlib Scatter Plot – scatter() Function

Matplotlib Contour Plot – contour() Function

Matplotlib Quiver Plot – quiver() Function

Matplotlib Box Plot – boxplot() Function

Matplotlib Violin Plot – violinplot() Function

MATPLOTLIB 3D

Matplotlib 3D Plotting – Line and Scatter Plot

Matplotlib 3D Contour Plot – contour3d() Function

Matplotlib 3D WireFrame Plot – plot_wireframe() Function

Matplotlib 3D Surface Plot – plot_surface() Function

Miscellaneous

Working with Text in Matplotlib

Mathematical expressions in matplotlib

Working with Images in Matplotlib

Follow Us On